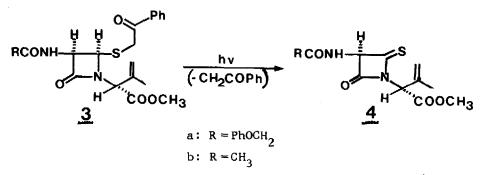
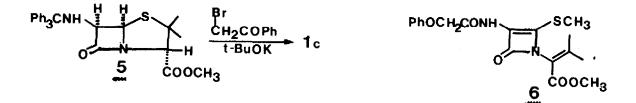

SYNTHESIS OF A NOVEL CLASS OF 2-AZETIDINONES: 4-THIOXO-2-AZETIDINONES. CONVERSION TO A 1,2-SECO-5,6-DEHYDROPENICILLIN

Alberto Brandt, Luciano Bassignani, and Luciano Re* Snamprogetti S.p.A., Via Ercole Ramarini 32, 00015 Monterotondo (Rome), Italy


(Received in UK 30 March 1976; accepted for publication 16 September 1976)

In the present communication we report the synthesis of the 4-thioxo-2-azeti dinones 2 and 4, the first examples of 2-azetidinones carrying a 4-thioxo group. The conversion of two of these derivatives (2a and 4a) to a1,2-seco-5,6-dehydrope-nicillin (6) is also reported, and it represents the first route to 1,2-secope-nicillins with an unsaturated β -lactam structure. Derivatives of type 2 and 4 are also, as reported in the accompanying paper¹, the direct synthetic precursor of the novel DL-5,6-dehydropenicillins.


The 4-thioxo-2-azetidinones 2 and 4 were obtained, by a Norrish type II photoelimination reaction, on irradiation of the corresponding 4-acylmethylthio-2azetidinones 1 and 3 with uv light.

$D: R = PROCH_2(0);$	$\mathbf{K} = \mathbf{U}\mathbf{n}_{2}\mathbf{r}\mathbf{n}_{3}$	K – FII	υ.	$K = 1100R_{2}00$,	x - 011-21
c: $R^1 = Ph_3C;$	$R^2 = CH_2;$	$R^3 = Ph$	c:	$R^1 = Ph_2C;$	$R^2 = CH_3^2$
d: $R^1 = CH_3CO;$	$R^2 = CH_2;$	R ³ = ₽h	d:	$R^1 = CH_3CO;$	$R^2 = CH_2$
e: $R^1 = CH_3CO;$	$R^2 = CH_3;$	$R^3 = CH_3$, C	J

Derivatives of type 1, except when substituted as in 1c $(R^{1} \neq acyl with R^{3} = aryl)$, and the ones of type 3 have been prepared from esters of penicillins², penicillin sulfoxides³ or 6p-triphenylmethylaminopenicillanic acid⁴ or from substituted 4-thia-2,6-diazabicyclo [3.2.0] hept-2-en-7-ones⁵ or by total synthesis^{5a}. For the synthesis of 1c we developed an original, one-step, procedure from methyl 6p-triphenylmethylaminopenicillanate $(5)^{6}$: To a stirred solution of 5 (3.78 g, 8.0 mmol) and phenacyl bromide (1.75 g, 8.8 mmol) in THF (30 ml) was added over a 30 min period, at -40° and under nitrogen, a solution of t-BuOK (0.898 g, 8.0 mmol) in THF (40 ml). After

additional 5 hr stirring at -40°, the neutralized (AcOH diluted with THF) and filtered solution was concentrated under vacuum, and the residue separated by silica gel chromatography ($C_{6}H_{6}$:EtOAc, 20:1) into unchanged 5 (1.71 g, 45% recovery) and pure (t.1.c.) 4-phenacylthio-2-azetidinone 1c (white foam, 1.52 g, 59% yield based on recovered 5): ir (CHCl₃) 1760 (β -lactam CO), 1720 (ester CO), 1673 (phenacyl CO), 1625 cm⁻¹ (C=C); nmr⁻⁷ (CDCl₃) δ 1.83 (3H,s) and 2.03 (3H,s) $\left[C=C(CH_{3})_{2}\right]$, 3.00 (1H,d, J=8Hz, NH), 3.42 (2H,q, J=14Hz, SCH₂), 3.80 (3H,s, COOCH₃) 4.60 (1H, q, J=4 and 8Hz, 3-H), 4.92 (1H,d, J=4Hz, 4-H), 6.90-7.90(20 H,m, aromatic); m/e 590, 485,347,243,228,155,105,77,68⁸.

For the preparation of the 4-thioxo-2-azetidinones 2 and 4 from the corresponding 4-acylmethylthio-2-azetidinones 1 and 3 a typical procedure was as follows. A deoxygenated stirred solution of $1a^9$ (0.965 g) in CH₃CN (150 ml) was ir-

radiated, at room temperature and under nitrogen, with a Hanovia 500-W mediumpressure mercury lamp through a Pyrex filter for 45 min. Removal under vacuum of the solvent and of the formed acetophenone (0.1 mm, room temperature) afforded glassy 2a (0.645 g, 89% yield) contaminated with ~10% starting material. The product 0, not crystallizable and unstable on chromatography, was sufficiently pure for the next step and for its spectrometric characterization: ir (CHCl₂) 1820 (β lactam CO), 1720 (ester CO), 1682 (amide CO), 1635 cm⁻¹ (sh, C=C); nmr (CDCl₃) § 2.06 (3H,s) and 2.28 (3H,s) [C=C(CH₃)₂], 3.80 (3H,s COOCH₃), 4.36 (2H,s, OCH₂CO), 4.91 (1H,d, J=8Hz, 3-H), 6.60-7.60 (5H,m, aromatic), 7.94 (1H,d, J=8Hz, NH). Similarly were prepared the other thioxo derivatives. Derivative 2b was obtained from 1.5 (86% yield) as a glass: ir practically matching the one of 2a; nmr (CDC1₃) **b** 2.06 (3H,s) and 2.28 (3H,s) $[C=C(CH_3)_2]$, 4.33 (2H,s, OCH₂CO), 4.91 (1H,d, J=8Hz, 3-H), 5.17 (2H,s, COOCH,), 6.60-7.60 (10 H,m, aromatic), 7.94 (1H,d, J=8Hz, NH). Derivative 2c was obtained from 1c (81% yield) as a foam, and was the only thioxo compound that could be purified (prep. silica gel t.l.c. eluting with C_gH_g:EtOAc, 20:1), giving in low yield a white foam: ir (CHCl₃) 1810 (**β**-lactam CO), 1720 (ester CO), 1620 cm⁻¹ (sh, C=C); nmr (CDCl₃) § 1.81 (3H,s) and 2.26 (3H,s) [C=C(CH₃)₂], 2.80 (1H,d, J=8Hz, NH), 3.67 (3H,s, COOCH₃), 4.75 (1H,d, J=8Hz, 3-H), 7.10-7.70 (15H,m, aromatic); $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{25}$ -1.4° (c= 1.00, CHCl₃)⁸. Derivative 2d was obtained from 1d (85% yield) as a glass: ir (CHCl₃) 1820 (**B**-lactam CO), 1722 (ester CO), 1675 (amide CO), 1635 cm⁻¹ (C=C); nmr (CDCl₃) δ 2.00 (3H,s) and 2.32 (3H,s) [C=C(CH₃)₂], 2.08 (3H,s, CH₃CO), 3.73 (3H,s, COOCH₃), 4.93 (1H,d, J=8Hz, 3-H), 7.53 (1H,d, J=8Hz, NH). Derivative 2d was obtained also from 1e¹¹ (using a Corex filter and irradiating for 4 hr) but in this case the crude, gummy, product was of low purity (~40% pure as judged by ir and nmr; yield corrected for pure 2d:~37%); partial purification of the latter by repeated precipitations from Et_20 -petroleum ether afforded, in very low yield, a gummy poduct whose structure 2d was confirmed by comparing its ir and nmr spectra to the ones of the product obtained from 1d. Derivative 4a was obtained from 3a 9 (80% yield) as a glass: ir (CHCl₃) 1820 (**B**-lactam CO), 1740 (ester CO), 1680 cm⁻¹ (amide CO); nmr (CDCl₃) **5** 1.85 (3H,s, C=CCH₃), 3.75 (3H,s, COOCH₃), 4.48 (2H,s, OCH₂CO), 5.06-5.60 (4H,m, CH₂=C, 3-H, and CHCOO), 6.70-7.90 (5H,m, aromatic), 8.05 (1H,d, J=8Hz, NH). Derivative 4b was obtained from 3b (78.5% yield) as a glass: ir (CHCl₃) 1818 (β-lactam CO), 1740 (ester CO), 1670 cm⁻¹ (amide CO); nmr (CDC1₃) **δ** 1.88 (3H,s, C∞CCH₃), 2.07 (3H,s, CH₃CO), 3.80 (3H,s, COOCH₂), 4.90-5.25 (4H,m, CH₂=C, 3-H, and CHCOO), 7.50 (1H,d, J=8Hz, NH).

The possibility of converting a derivative of type 2 or 4 to a 1,2-seco-5,6-

dehydropenicillin was demonstrated on substrates 2a and 4a which, on treatment with Et_3N and excess methyl iodide, gave the seco derivative 6 as follows. A solution of the crude 2a or 4a (0.181 g, 0.5 mmol) in CH2C12 (10 ml) was treated at room temperature and under nitrogen for 3 hr with CH_3I (0.156 ml, 2.5 mmol) and Et_3N (0.07 m1, 0.5 mmol). Prep. silica gel t.l.c. (C6H6:EtOAc, 4:1) of the residue obtained on concentration under vacuum gave pure 2-methylthio-2-azetin-4-one derivative 6 (0.098 g, 52% yield from 2a; 0.050 g, 26.5% yield from 4a) as a white amorphous solid which cristallized from Et₂0: mp 86-87.5°; ir (CHCl₃) 1715 (v. br., ester and unsat. **B**-lactam CO), 1635 (sh, C=C), 1622 cm⁻¹ (amide CO);¹² mnr (CDCl₃) **6** 1.91 (3H,s) and 2.25 (3H,s) $\left[C=C(CH_3)_2\right]$, 2.75 (3H,s, SCH₃), 3.70 (3H,s, COOCH₃), 4.85¹³ (2H,s,OCH₂CO), 7.00-8.00 (6H,m, aromatic and NH); m/e 376,283,235,223,193,181,94^{8,14}.

REFERENCES AND NOTES

- (1) A. Brandt, L. Bassignani, L. Re, <u>Tetrahedron Lett.</u>, following communication.
- (2) M. Yoshimoto, S. Ishihara, E. Nakayama, E. Shoji, H. Kuwano, and N. Soma, Tetrahedron Lett., 4387 (1972).
- (3) R. Lattrell, Justus Liebigs Ann. Chem., 1937 (1974).
- (4) J.H.C. Nayler, M.J. Pearson, and R. Southgate, <u>Chem. Commun.</u>, 57 (1973).
 (5) (a) R. Lattrell, <u>Justus Liebigs Ann. Chem.</u>, 1361 (1974); (b) Glaxo Laboratories Ltd., Ger. Offen., 2,138,320 (1972); <u>Chem. Abstr.</u>, 77, 61987p (1972).
 (6) J.C. Sheehan and K.R. Henery-Logan, <u>J.Am.Chem.Soc.</u>, 84, 2983 (1962).
- (7) The 60-MHz nmr spectra were recorded on a Varian T-60 using TMS as internal stan dard. The mass spectra were obtained using a Varian Mat 111 instrument.
- (8) Elemental analysis gave proper values.
- (9) Prepared in ~70% yield from the corresponding substituted 4-thia-2,6-diazabicyclo [3.2.0.] hept-2-en-7-one and phenacyl bromide in analogy to the procedures described under ref.5.
- (10) All the thioxo derivatives synthesized gave, contrary to their immediate precur sors, an instantaneous reaction in the iodine-azide spot test for thiocarbonyl compounds (F. Feigl, "Spot Tests in Organic Analysis", 7th engl. ed, Elsevier, Amsterdam, 1966, pp 219-222).
- (11) Prepared in four steps and in $\sim 20\%$ overall yield starting from 5 and prop-2ynyl bromide, in analogy to the procedure described under ref. 4 for the preparation of an analogue.
- (12) Ir (KBr) 1720 (ester CO), 1689 (unsat. **B**-lactam CO), 1630 (sh, C=C) 1618 cm⁻¹ (am<u>i</u> de CO). A shift of the B-lactam carbonyl stretching vibration at lower wavelenght following the introduction of a double bond in the β -lactam ring has al ready been reported (see refs. 3d and 3e cited in the accompanying paper¹). The larger shift found here from the value observed for a saturated B-lactam analogue [J.P. Clayton, J.H.C. Nayler, R. Southgate, and P. Tolliday, Chem.Comm. 590 (1971)] is attributed to a stronger conjugative effect.
- (13) This higher value as compared to the one observed by Clayton et al. (see ref. cited under note 12) for a saturated β -lactam analogue is in line with the presence of the double bond in the β -lactam ring of $\underline{6}$: compare the CH₂ resonance of PhCH_CH(NHCOCH_)COOH and PhCH=C(NHCOCH_)COOH found at § 1.89 (Aldrich Libra ry of NMR Spectra, Vol.VII, 4C) and 2.05 [T.P. Dang, J.-C. Poulin, and H.B. Kagan, <u>J.Organometal.Chem.</u>, 91, 105 (1975)] respectively. (14) The structure of 6 has been confirmed by high-resolution mass-spectrometry and
- ¹³C nmr studies (to be published).